04 Sep 2020.

Encuentran discos de formación de planetas destrozados por sus tres estrellas centrales

Un equipo de astrónomos ha identificado, con los telescopios VLT y ALMA, la primera evidencia directa de que los grupos de estrellas pueden destruir sus discos de formación planetaria, dejándolos deformados y con sus anillos inclinados. Los resultados sugieren que los exoplanetas pueden formarse en órbitas muy inclinadas y distantes.

Fuente: Agencia SINC

ALMA , discos protoplanetarios , exoplanetas , VLT


La imagen de SPHERE (derecha) permitió a los astrónomos ver, por primera vez, la sombra que este anillo proyecta sobre el resto del disco. Esto les ayudó a averiguar la forma 3D del anillo y del conjunto del disco. El panel izquierdo muestra una representación artística de la región interna del disco. / ESO/L. Calçada, Exeter/Kraus et al.

El Sistema Solar, donde se encuentra la Tierra, tiene a todos sus planetas orbitando en un mismo plano, algo considerado como “sorprendente” por la comunidad científica astronómica. Pero este no siempre ocurre así, en especial para los discos protoplanetarios que se encuentran alrededor de múltiples estrellas.

Este es el caso de GW Orionis, situado a 1.300 años luz de distancia, en la constelación de Orión. Este sistema, según se ha observado, tiene tres estrellas y un disco de formación planetaria deformado y desgarrado que las rodea.

Stefan Kraus, profesor de astrofísica de la Universidad de Exeter (Reino Unido), afirma que las observaciones “revelan un caso extremo en el que el disco no es plano en absoluto, sino que está deformado y tiene un anillo desalineado que se ha separado del disco”. Kraus ha dirigido esta investigación, publicada en el último número de Science.

Animación artística del anillo inclinado desgarrado del disco y del propio disco deformado. / ESO/Exeter/Kraus et al./L. Calçada

Para llegar a estos resultados, el equipo observó a GW Orionis durante más de 11 años. A partir de 2008, utilizaron los instrumentos AMBER –combinador astronómico de haces de luz múltiples– y GRAVITY instalados en el interferómetro del Very Large Telescope (VLT) del Observatorio Europeo Austral (ESO, por sus siglas en inglés) de Chile. Estas herramientas combinan la luz de diferentes telescopios VLT, estudian la ‘danza’ gravitacional de las tres estrellas del sistema y mapean sus órbitas.

También observaron el sistema con SPHERE –un instrumento de búsqueda de exoplanetas–, instalado en el VLT, y con el Atacama Large Millimeter/submillimeter Array (ALMA), del que ESO es socio. Estas herramientas ayudaron al equipo a captar imágenes del anillo interior y confirmar su desalineación respecto al disco protoplanetario. SPHERE también les permitió ver la sombra que este anillo proyecta sobre el disco, lo que ayudó a averiguar la forma tridimensional de ambos elementos de este sistema.

La imagen de ALMA (izq.) muestra la estructura anillada del disco, con el anillo más interno separado del resto del disco. Las observaciones de SPHERE (dch.) permitieron ver por primera vez la sombra de este anillo interno sobre el resto del disco. / ALMA (ESO/NAOJ/NRAO), ESO/Exeter/Kraus et al.

Exoplanetas en órbitas inclinadas y distantes

Este trabajo también revela que el anillo interior contiene 30 masas terrestres de polvo, lo que podría ser suficiente para formar exoplanetas.

Este sistema es un “caso extremo” en el que el disco de formación de planetas está deformado y con un anillo interior desalineado y separado

Alexander Kreplin, integrante de la investigación por parte de la Universidad de Exeter, explica que cualquier planeta que se forme dentro de este anillo desalineado orbitará en una trayectoria altamente oblicua respecto a su estrella. “Predecimos que se van a descubrir muchos planetas en órbitas oblicuas con una amplia separación serán descubiertos en campañas de búsqueda de planetas a través de herramientas como, por ejemplo, el Telescopio Extremadamente Grande (ELT, por sus siglas en inglés) de ESO”, postula Kreplin.

Dado que más de la mitad de las estrellas nacen con una o más compañeras, esta investigación plantea una perspectiva inédita: podría haber una población desconocida de exoplanetas que orbitan de manera muy inclinada y distante respecto a sus soles. El ELT, que está previsto que comience a operar a lo largo de esta década, podría ayudar a esta búsqueda.

Simulaciones informáticas para ver cómo se desgarra el disco

El equipo internacional de astrónomos, que incluye investigadores de Reino Unido, Bélgica, Chile, Francia y Estados Unidos, ha combinado sus observaciones con simulaciones informáticas para entender qué había sucedido en GW Orionis.

Con este trabajo fueron capaces de vincular las desalineaciones observadas con el teórico ‘efecto de desgarro de disco’, que sugiere que el tirón gravitacional de varias estrellas en diferentes planos pueden deformar y romper sus discos de formación de planetas.

El anillo interior contiene 30 masas terrestres de polvo, lo que podría ser suficiente para formar exoplanetas

Las simulaciones mostraron que la desalineación en las órbitas de las tres estrellas de GW Orionis podría hacer que el disco se rompiera en anillos distintos, que es exactamente lo que se ha observado. La forma del anillo interno también coincide con las predicciones de las simulaciones númericas.

Otra investigación, que estudió el mismo sistema usando el telescopio ALMA, considera que se necesita otro ingrediente, aún desconocido, para entender el sistema GW Orionis al completo. Jiaqing Bi, investigador de la Universidad de Victoria (Canadá) y director de un estudio de GW Orionis publicado en mayo en The Astrophysical Journal Letters, afirma que la presencia de un planeta entre estos anillos «es necesaria para explicar por qué se destrozó el disco”. Su equipo identificó tres anillos de polvo, siendo el más externo el de mayor dimensión jamás observado en cuanto a discos protoplanetarios.

Referencia:

S. Kraus et al., “A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing”. Science.

Últimas noticias publicadas Ver más

02 Dic 2024 | Granada
Nuevas evidencias de materia orgánica en Ceres, el planeta con más agua después de la Tierra
Gracias a un enfoque innovador que combina alta resolución espacial y espectral, el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha podido analizar la distribución de compuestos orgánicos en Ceres con un nivel de detalle sin precedentes. El estudio allana el camino para regresar en un futuro no muy lejano a Ceres, con el objetivo de esclarecer la naturaleza del material encontrado y analizar sus posibles implicaciones astrobiológicas.
Leer más
30 Nov 2024 | Málaga
Desarrollan una metodología láser a la carta para generar y analizar micrometeoritos
El laboratorio UMALASERLAB de la Universidad de Málaga ha desarrollado una tecnología pionera que recrea micrometeoritos in-situ para posteriormente aislar, identificar y evaluar su composición química. La principal ventaja de este procedimiento radica en la nula manipulación del material.
Leer más
27 Nov 2024 | Granada
Galicia acogerá la final nacional del desafío ‘CanSat 2025’ de la ESA
El Parque de las Ciencias ha acogido el ‘Encuentro Nacional de Nodos ESERO España 2024’ donde se han dado a conocer las sedes de las dos finales de los desafíos de la ESA más esperados por los centros educativos de todo el territorio español: Galicia será la sede de la final nacional de CanSat 2025 y Murcia, por su parte, lo será de la de Detectives Climáticos.
Leer más
404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido