14 Dic 2021. Internacional

Las mejores imágenes del movimiento de las estrellas alrededor del agujero negro de nuestra galaxia

Con la ayuda del instrumento GRAVITY del Very Large Telescope (ESO) se han obtenido las imágenes más profundas y nítidas conseguidas hasta ahora de la región que rodea al agujero negro supermasivo situado en el centro de la Vía Láctea. Al rastrear las estrellas de ese entorno se ha descubierto una nueva.

Fuente: Agencia SINC

agujeros negros , astronomía , ESO , Sagitario A* , VLT

Estrellas orbitando muy cerca de Sagitario A*, el agujero negro supermasivo que se encuentra en el corazón de la Vía Láctea. La estrella S29 fue observada mientras hacía su aproximación más cercana al agujero, y se ha descubierto otra nueva: S300. Las imágenes, con anotaciones, se obtuvieron en 2021 con el instrumento GRAVITY instalado en el Interferómetro del Very Large Telescope (VLTI). / ESO/GRAVITY collaboration

“¿Cómo de masivo es Sagitario A*, el agujero negro que hay en el centro de la Vía Láctea? ¿Rota? ¿Las estrellas de su alrededor se compartan como predice la Teoría de la Relatividad General de Einstein? La mejor manera de responder a estas preguntas es siguiendo a las estrellas que orbitan a este agujero negro supermasivo, y ahora demostramos que podemos hacerlo con la mayor precisión alcanzada hasta ahora”, explica Reinhard Genzel, director del Instituto Max Planck de Física Extraterrestre (MPE, Alemania).

Genzel, que recibió un Premio Nobel en 2020 por el análisis de Sagitario A*, publica esta semana, junto a otros astrofísicos, dos estudios en la revista Astronomy & Astrophysics donde amplían tres décadas de investigaciones sobre las estrellas que orbitan este agujero negro. El equipo ha desarrollado una nueva técnica de análisis que les ha permitido obtener las imágenes más profundas y nítidas de nuestro centro galáctico.

“El Interferómetro del Very Large Telescope (VLTI) nos da una increíble resolución espacial y, con las nuevas imágenes, alcanzamos una profundidad nunca lograda antes. Estamos atónitos por su cantidad de detalles, y por la actividad y el número de estrellas que revelan alrededor del agujero negro”, explica Julia Stadler, científica del Instituto Max Planck de Astrofísica en Garching, quien dirigió los esfuerzos del equipo para la obtención de imágenes durante su etapa en MPE.

Buscando nuevas estrellas en ese entorno, sorprendentemente encontraron una, llamada S300, que no se había visto anteriormente, lo que demuestra cuán potente es este método cuando se trata de detectar objetos muy débiles cerca de Sagitario A*.

Con sus últimas observaciones, realizadas entre marzo y julio de 2021, los investigadores se centraron en realizar mediciones precisas de las estrellas a medida que se acercaban al agujero negro.

Esto incluye a la estrella S29, que ostenta el récord, ya que hizo su aproximación más cercana al agujero negro a finales de mayo de 2021. Pasó a una distancia de tan solo 13 000 millones de kilómetros, aproximadamente 90 veces la distancia Sol-Tierra, a la impresionante velocidad de 8 740 kilómetros por segundo. Nunca se había observado otra estrella que pasase tan cerca o viajase tan rápido alrededor del agujero negro.

Instrumento GRAVITY

Las mediciones e imágenes del equipo fueron posibles gracias a GRAVITY, un instrumento único que la colaboración –denominada también así– desarrolló para el VLTI que el Observatorio Europeo Austral (ESO) tiene en Chile. GRAVITY combina la luz de los cuatro telescopios de 8.2 metros del VLT utilizando una técnica llamada interferometría.

Esta técnica es compleja, “(…) pero al final se obtienen imágenes 20 veces más nítidas que las que obtendríamos utilizando los telescopios del VLT de forma individual, revelando los secretos del centro galáctico”, afirma Frank Eisenhauer, del MPE e investigador principal de GRAVITY.

“Seguir a las estrellas en órbitas cercanas alrededor de Sagitario A* nos permite sondear con precisión el campo gravitacional que hay alrededor del agujero negro masivo más cercano a la Tierra, probar la relatividad general y determinar las propiedades del agujero negro”, explica Genzel.

Las nuevas observaciones, combinadas con los datos anteriores del equipo, confirman que las estrellas se comportan tal y como predice la relatividad general para los objetos que se mueven alrededor de un agujero negro con una masa de 4.30 millones de veces la del Sol. Se trata de la estimación más precisa de la masa del agujero negro central de la Vía Láctea realizada hasta la fecha. El equipo de investigación también logró ajustar la distancia a Sagitario A*, determinando que se encuentra a 27 000 años luz de distancia.

Para obtener las nuevas imágenes, el equipo utilizó una técnica de aprendizaje automático, llamada Teoría de Campos de la Información (Information Field Theory). Hicieron un modelo de cómo pueden ser las fuentes reales, simularon cómo las vería GRAVITY y compararon esta simulación con las  observaciones del instrumento.

Ayuda de otros instrumentos

Esto les permitió detectar y rastrear estrellas alrededor de Sagitario A* con una profundidad y precisión incomparables. Además de las observaciones con GRAVITY, los autores también utilizaron datos de NACO y SINFONI, dos antiguos instrumentos del VLT, así como mediciones del Observatorio Keck y el Observatorio Gemini del laboratorio NOIRLab en Estados Unidos.

GRAVITY se actualizará a finales de esta década a GRAVITY+, que también se instalará en el VLTI de ESO, aumentando aún más su sensibilidad para detectar estrellas aún más débiles y más cercanas al agujero negro. Finalmente, el equipo tiene como objetivo detectar estrellas tan cercanas que sus órbitas sientan los efectos gravitacionales causados por la rotación del objeto supermasivo.

El próximo Telescopio Extremadamente Grande (ELT) de ESO, en construcción en el desierto chileno de Atacama, permitirá al equipo medir la velocidad de estas estrellas con una precisión muy alta. “Combinando las capacidades de GRAVITY + y el ELT, podremos descubrir la velocidad a la que gira el agujero negro”, adelanta Eisenhauer, quien recuerda que hasta ahora nadie ha sido capaz de hacerlo.

Referencia

GRAVITY collaboration et al. Deep Images of the Galactic Center with GRAVITY y The mass distribution in the Galactic Centre from interferometric astrometry of multiple stellar orbits. Astronomy & Astrophysics, diciembre de 2021. DOIs respectivos: 10.1051/0004-6361/202142459 y 10.1051/0004-6361/202142465

Enlaces de interés

¿Qué estructura tiene la galaxia?

¿Han sido siempre las galaxias como son ahora?

Últimas noticias publicadas Ver más

02 Dic 2024 | Granada
Nuevas evidencias de materia orgánica en Ceres, el planeta con más agua después de la Tierra
Gracias a un enfoque innovador que combina alta resolución espacial y espectral, el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha podido analizar la distribución de compuestos orgánicos en Ceres con un nivel de detalle sin precedentes. El estudio allana el camino para regresar en un futuro no muy lejano a Ceres, con el objetivo de esclarecer la naturaleza del material encontrado y analizar sus posibles implicaciones astrobiológicas.
Leer más
30 Nov 2024 | Málaga
Desarrollan una metodología láser a la carta para generar y analizar micrometeoritos
El laboratorio UMALASERLAB de la Universidad de Málaga ha desarrollado una tecnología pionera que recrea micrometeoritos in-situ para posteriormente aislar, identificar y evaluar su composición química. La principal ventaja de este procedimiento radica en la nula manipulación del material.
Leer más
27 Nov 2024 | Granada
Galicia acogerá la final nacional del desafío ‘CanSat 2025’ de la ESA
El Parque de las Ciencias ha acogido el ‘Encuentro Nacional de Nodos ESERO España 2024’ donde se han dado a conocer las sedes de las dos finales de los desafíos de la ESA más esperados por los centros educativos de todo el territorio español: Galicia será la sede de la final nacional de CanSat 2025 y Murcia, por su parte, lo será de la de Detectives Climáticos.
Leer más
404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido