02 Mar 2017.

Restos de una enorme inundación en Marte

Desembocadura de Kasei Valles

El sistema de canales de Kasei Valles se extiende por unos 3.000 km  desde su origen en Echus Chasma —al este de la elevada región volcánica de Tharsis y justo al norte del sistema de cañones de Valles Marineris— hasta desembocar en las enormes llanuras de Chryse Planitia.

Cráter Worcester en contexto

Una combinación de vulcanismo, tectónica, derrumbes y subsidencia en la región de Tharsis provocó la liberación de grandes masas de agua en distintos puntos de Echus Chasma, que inundaron la región de Kasei Valles hace unos 3.600-3.400 millones de años. Estas antiguas mega inundaciones dejaron su huella en las formaciones que podemos ver hoy en día.

Distintas secciones de Kasei Valles ya han sido fotografiadas por Mars Express  durante sus 14 años junto al Planeta Rojo, pero esta nueva imagen, tomada el 25 de mayo de 2016, captura una sección justo en su desembocadura.

Un cráter de impacto de 25 km de ancho —el cráter Worcester—, que aparece a la izquierda del centro de la imagen en color principal, apenas ha conseguido resistir la fuerte erosión de estas mega inundaciones.

Aunque ha desaparecido gran parte del manto de material que rodeaba el cráter, expulsado de su interior en el momento del impacto, la sección aguas abajo logró resistir. Con el tiempo, esto ha dado lugar a un aspecto de isla alargada, con una topografía escalonada que podría sugerir variaciones en los niveles de agua debidos a distintos episodios de inundaciones.

 

Topografía de la desembocadura de Kasei Valles

Por el contrario, el manto de residuos que rodea el cráter adyacente ha permanecido intacto. Esto indica que el impacto que provocó el cráter se produjo después de la inundación principal.

El aspecto del manto de residuos, además, nos habla de la naturaleza de la superficie subyacente: en este caso apunta a una abundancia de agua o hielo de agua en la vega.

En efecto, este patrón recuerda al de una “salpicadura”: los residuos proyectados desde el cráter eran ricos en agua, lo que les permitió fluir con cierta facilidad. Según iba reduciéndose su velocidad, estos restos iban quedando atrás, formando terraplenes a media que el material se apilaba.

 

Vista en perspectiva hacia el cráter Worcester

El gran cráter que aparece más al norte (arriba a la derecha) de la imagen no parece ser tan profundo como el cráter Worcester y su vecino. De hecho, se encuentra en una planicie al menos 1 km más elevada que las llanuras inferiores.

No obstante, en el centro del cráter se ve una pequeña depresión, lo que suele indicar una capa más débil —de hielo, por ejemplo— que estaba enterrada en el momento del impacto. Una observación más detallada también revela el tenue contorno del manto de eyección del cráter, incluyendo una parte vertida sobre las planicies inferiores.

La vista en perspectiva muestra un primer plano de estos terraplenes, mirando desde el cráter asociado hacia el erosionado cráter Worcester, al fondo.

 

Anaglifo de la desembocadura de Kasei Valles

Este material eyectado muestra un interesante patrón estriado del que carecen otros cráteres de esta imagen. Esto podría sugerir una diferencia en la naturaleza del propio impacto, quizá debido a la energía del choque, a la forma en que el material eyectado se distribuyó o a la composición de la elevación.

Alrededor de esta elevación pueden verse pequeños canales dentríticos, lo que podría apuntar a variaciones en la magnitud de inundación a lo largo de numerosos episodios.

También pueden apreciarse cierto número de cráteres menores en las llanuras. Estos parecen poseer unas “colas” de color más claro apuntando en la dirección opuesta al flujo del agua procedente de Kasei Valles.

Estos cráteres se formaron por impactos producidos tras la gigantesca inundación, y sus delicadas colas se deben a los vientos que soplan subiendo por el valle hacia el oeste. Sus crestas elevadas influyen en el flujo del viento sobre el cráter, de forma que el polvo situado inmediatamente “detrás” de él no se ve perturbado en comparación con las llanuras colindantes, más expuestas.

Gracias a todas estas características, la escena puede darnos cuenta de la actividad geológica a lo largo de miles de millones de años en la historia de Marte.

 

Últimas noticias publicadas Ver más

01 Jul 2025 | Granada
El telescopio PLATO completa una fase clave en su camino hacia la búsqueda de exoplanetas
La integración de los dos componentes principales de su telescopio en las instalaciones de OHB, en Oberpfaffenhofen (Alemania), marca un paso decisivo en la misión. El Instituto de Astrofísica de Andalucía (IAA-CSIC) juega un papel destacado en los ámbitos científico y tecnológico, tanto en este hito como en la misión en su conjunto.
Leer más
22 Jun 2025 | Andalucía
Un proyecto de ciencia ciudadana ‘traduce’ la luz de las estrellas al ritmo del flamenco
Investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC) y la Universidad de Granada han identificado los patrones lumínicos que emiten las estrellas tipo Delta-Scuti para transformarlos en sonidos con la colaboración del profesorado del Real Conservatorio Superior de Música Victoria Eugenia de Granada. Esta iniciativa está apoyada por la Oficina de Ciencia Ciudadana de Andalucía, que coordina la Fundación Descubre-Consejería de Universidad, Investigación e Innovación y la Universidad Pablo de Olavide y pretende potenciar la utilización de esta metodología entre distintos agentes de la región.
Leer más
20 Jun 2025 | Andalucía
Comienza el solsticio de verano en el hemisferio norte
El sábado 21 de junio a las 4 horas y 42 minutos, hora oficial peninsular, comenzará el verano en el hemisferio norte, según cálculos del Observatorio Astronómico Nacional. Este será el día con más horas de Sol del año y con él se iniciará una estación que durará aproximadamente 93 días y 16 horas y terminará el 22 de septiembre con el comienzo del otoño.
Leer más
Ir al contenido