Volver

08 Jun 2020.

Una posible explicación al hexágono de Saturno

Hace décadas que los astrónomos se preguntan cómo se genera el patrón nuboso con forma de hexágono en el polo norte de Saturno. Ahora dos investigadores de la Universidad de Harvard han simulado en 3D los movimientos de los ciclones, anticiclones y corrientes de convección del gigante gaseoso.

Fuente: Agencia SINC

atmósfera , planetas , Saturno , sistema solar

Hexágono del polo norte de Saturno visto por la sonda Cassini. / NASA/JPL-Caltech/Space Science Institute

El patrón de flujo atmosférico hexagonal que rodea el polo norte de Saturno se viene observando desde hace 40 años de forma constante. Algunos modelos han logrado reproducir este fenómeno aplicando restricciones externas, como diferencias de presión, pero se desconoce cómo podría surgir de manera espontánea.

Dos investigadores de Harvard han desarrollado modelos en 3D de las tormentas gigantes y corrientes de convección de Saturno para ver cómo pueden generar su hexágono polar

Para ofrecer una respuesta, los investigadores Rakesh Yadav y Jeremy Bloxham de la Universidad de Harvard (EE UU) han desarrollado modelos en 3D de los vórtices o tormentas gigantes de Saturno, así como de las corrientes de convección profundas de las capas externas de su atmósfera.

Los resultados, publicados en la revista PNAS, revelan las interrelaciones que se producen entre los diferentes ciclones, anticiclones y flujos latitudinales de sentido alterno que caracterizan al gigante gaseoso, ofreciendo una explicación sobre cómo se puede formar su enigmático hexágono polar.

Las simulaciones recrearon el gran ciclón central del polo norte, rodeado por tres vórtices anticiclónicos, varios vórtices ciclónicos más pequeños y un fuerte jet o chorro hacia el este, localizado aproximadamente a 60 grados al norte del ecuador. Este chorro presenta nueve bordes, como resultado de ser ‘pellizcado’ por los vórtices circundantes.

“Para visualizarlo, imagina que tienes una goma elástica grande”, explica Yadav a SINC, “luego coloca otras gomas más pequeñas alrededor de la grande y tira con ellas desde el exterior: veras que la más grande se deforma y toma la forma de un polígono marcado por el número de gomas pequeñas de su alrededor”.

Tormentas gigantes ocultas bajo la superficie

El investigador aclara que las tormentas gigantes que probablemente generan este chorro poligonal se encuentran en el interior profundo, “y no se ven directamente debido a la caótica ebullición del gas en la superficie de Saturno”. Sea como fuere, todo este complejo mecanismo está detrás de su hexágono polar, según los autores.

Hasta ahora no se ha observado nada similar en otros planetas de nuestro sistema solar, pero, como apunta Yadav, “seguramente habrá muchos otros exoplanetas alrededor de otras estrellas donde se formarán chorros zonales con hexágonos u otros polígonos, aunque desgraciadamente de momento no podemos verlos porque están muy lejos”.

Vista de los vórtices y flujos en la superficie de Saturno. / R. Yadav, J. Bloxham/PNAS

Vista de los vórtices y flujos en la superficie de Saturno. / R. Yadav, J. Bloxham/PNAS

Referencia:

Rakesh Yadav y Jeremy Bloxham. “Deep rotating convection generates the polar hexagon on Saturn”. PNAS, 8 de junio de 2020.

Últimas noticias publicadas Ver más

01 Ago 2025
Perseidas 2025: condiciones y mejores días para observarlas
Las Perseidas son una de las lluvias de estrellas más esperadas del año. En 2025 el máximo el día 12 de agosto hacia las 22 horas de tiempo oficial peninsular. En esta ocasión, por esa fecha la Luna acabará de pasar su fase llena, por lo que estará muy iluminada y las condiciones para la observación no serán óptimas. Los mejores momentos para contemplar la lluvia en esos días serán justo después del ocaso, antes de que salga nuestro satélite o mientras se encuentre muy bajo en el cielo. 
Leer más
10 Jul 2025 | Granada
El Telescopio del Horizonte de Sucesos revela por qué el anillo del M87 no es perfectamente circular
El estudio, coliderado por el Instituto de Astrofísica de Andalucía, revela que la elipticidad del anillo de M87* se debe a la turbulencia del plasma que lo rodea, y no a su velocidad de rotación sobre su propio eje, conocida como espín. Los resultados acercan a la comunidad científica a aislar la firma gravitacional de un agujero negro y poder medir su espín de forma directa.
Leer más
09 Jul 2025 | Internacional
Restos del lado oculto de la Luna podrían explicar el origen de su asimetría
Las observaciones de este satélite han revelado que existe una diferencia significativa entre sus dos caras. No obstante, un nuevo estudio que analiza muestras lunares procedentes de la cuenca del Polo Sur Aitken señala que comparten características isotópicas y geoquímicas.
Leer más
Ir al contenido