Volver

17 Oct 2016.

Cuenta atrás para la llegada de ExoMars a Marte

Fuente: Agenciasinc

<p>El módulo Schiaparelli (a la derecha) ya se ha separado este domingo del satélite TGO (a la izquierda) para preparar su ‘amartizaje’ el próximo 19 de octubre. / ESA/ATG medialab</p>

El módulo Schiaparelli (a la derecha) ya se ha separado este domingo del satélite TGO (a la izquierda) para preparar su ‘amartizaje’ el próximo 19 de octubre. / ESA/ATG medialab

La pregunta sobre si hay indicios de vida presente o pasada en Marte es uno de los grandes interrogantes científicos actuales. Para responderla, la Agencia Espacial Europea (ESA) y la agencia espacial rusa Roscosmos han desarrollado el programa ExoMars, cuyo objetivo es investigar el entorno de Marte y probar nuevas tecnologías que allanen el camino de cara a una futura misión de recogida de muestras al planeta rojo en la década de 2020.

Este programa incluye dos misiones. La primera despegó en marzo y consiste en el envío de un satélite para el estudio de gases traza (TGO, por sus siglas en inglés) y un módulo demostrador de entrada, descenso y aterrizaje llamado Schiaparelli, que este domingo ya se ha separado del satélite a unos 6 millones de kilómetros de la superficie marciana. En una segunda misión, inicialmente prevista para 2018 y ahora retrasada a 2020, se enviará un rover o vehículo de exploración a Marte.

Esta semana será clave para la misión ExoMars 2016, ya que el miércoles el satélite TGO se insertará en la órbita marciana y Schiaparelli ejecutará su maniobra de entrada en la atmósfera (a 121 km de altura), descenso y aterrizaje entre las 16:42 h y 16:48 h (hora peninsular española). En menos de seis minutos se posará en la región Meridiani Planum, un acontecimiento que la ESA retransmitirá a través de internet.

En su descenso, que comenzará con una velocidad de 21.000 km/h, la nave utilizará un escudo térmico, un paracaídas, propulsores y una estructura deformable que absorberá el impacto final. El objetivo del módulo es probar una serie de tecnologías que permitirán el descenso controlado y el aterrizaje en Marte como preparativo para futuras misiones. Al ser un módulo demostrador, está diseñado para funcionar solo unos días.

Schiaparelli también lleva un pequeño paquete científico que registrará la velocidad el viento, la humedad, la presión y la temperatura en el punto de aterrizaje, y obtendrá las primeras medidas de los campos eléctricos en la superficie del planeta rojo. Estos datos podrían arrojar luz sobre el origen de las tormentas de arena.

Los responsables de la misión controlarán las maniobras desde el Centro Europeo de Operaciones Espaciales (ESOC), en Alemania. También se seguirán de cerca desde el Centro Europeo de Astronomía Espacial de la ESA (ESAC), en la localidad madrileña de Villanueva de la Cañada, donde habrá un encuentro con expertos de la misión ExoMars.

Hará 15 fotos en blanco y negro

Aunque su pequeño paquete científico realizará lecturas de la atmósfera, Schiaparelli carece de cámara científica como las que podemos encontrar en otros módulos de aterrizaje o robots exploradores, incluyendo el futuro rover de ExoMars.

No obstante, el módulo de aterrizaje monta una pequeña cámara técnica de la ESA, de 0,6 kg, denominada DECA (DEscent CAmera). Se trata de un modelo de recambio de vuelo adaptado de la Cámara de Seguimiento Visual (VMC) que llevaba la nave Herschel/Planck de la ESA para fotografiar la separación de los dos componentes tras su lanzamiento conjunto.

Su objetivo es realizar durante el descenso 15 fotografías en blanco y negro que servirán para reconstruir la trayectoria y el movimiento de Schiaparelli, así como para proporcionar información contextual del punto de contacto. Los científicos ya han simulado la vista que esperan que la cámara capture durante su trayectoria.

Sus 60º de campo de visión ofrecerán una amplia vista de la superficie, maximizando las posibilidades de ver formaciones que ayudarán a identificar el lugar de aterrizaje, así como revelar la actitud y la posición de Schiaparelli durante el descenso.

La cámara comenzará a tomar las imágenes aproximadamente un minuto después de que el escudo frontal se haya desprendido, con el módulo a unos 3 km del suelo. Así, las fotografías abarcarán unos 17 km2 de superficie. Las fotografías se realizarán a intervalos de 1,5 segundos para acabar a una altitud de unos 1,5 km, cubriendo un área de unos 4,6 km2.

Después, a unos 1,2 km de altitud, se desprenderán el paracaídas y la cubierta trasera, y se encenderán los propulsores. Estos últimos se apagarán a tan solo 2 m del suelo y ahí será cuando la estructura deformable se encargará de absorber la fuerza del impacto.

Schiaparelli se dirigirá al centro de una elipse de 100 x 15 km en una zona relativamente llana de Meridiani Planum, en el hemisferio sur del planeta, cerca de su ecuador. Esta región ha sido ampliamente fotografiada en órbita, entre otros, por las sondas Mars Express de la ESA y Mars Reconnaissance Orbiter de la NASA.

Investigar los gases con TGO

Por su parte, el satélite TGO realizará un inventario detallado de los gases atmosféricos del planeta rojo, especialmente de los gases poco frecuentes como el metano, que implica que existe una fuente de corriente activa. Su objetivo es medir la dependencia geográfica y estacional del metano, para así determinar si procede de una fuente geológica o biológica.

El TGO comenzará su misión científica a finales de 2017, tras un año de complejas maniobras de aerofrenado para circularizar su órbita. También servirá para transmitir los datos del vehículo ExoMars 2020.

161017_exomars_simulacioncamaraESA-ATG medialab

Descenso del módulo Schiaparelli y simulación de las imágenes que irá tomando. / ESA/ATG medialab et al.

Últimas noticias publicadas Ver más

06 Dic 2024 | Internacional
El Hubble observa la formación de estrellas en la galaxia NGC 1637
Esta imagen captada por el telescopio espacial Hubble de la NASA/ESA es NGC 1637, una galaxia espiral ubicada a 38 millones de años luz de la Tierra en la constelación de Eridanus.
Leer más
05 Dic 2024 | Granada
El proyecto LPI explorará nuevas fronteras en astronomía cuántica desde La Palma
El Instituto de Astrofísica de Andalucía lidera el proyecto LPI (La Palma Interferometer) que busca realizar observaciones astronómicas con una resolución espacial mil veces superior a la de los telescopios espaciales Hubble y James Webb. LPI cuenta con la colaboración de diversos centros de investigación de España, Italia, los países nórdicos y México, que trabajan para consolidar una instalación científica de referencia en el ámbito internacional.
Leer más
02 Dic 2024 | Granada
Nuevas evidencias de materia orgánica en Ceres, el planeta con más agua después de la Tierra
Gracias a un enfoque innovador que combina alta resolución espacial y espectral, el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha podido analizar la distribución de compuestos orgánicos en Ceres con un nivel de detalle sin precedentes. El estudio allana el camino para regresar en un futuro no muy lejano a Ceres, con el objetivo de esclarecer la naturaleza del material encontrado y analizar sus posibles implicaciones astrobiológicas.
Leer más
404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido