Volver

31 Mar 2017.

El color rojo de Marte podría deberse a la fuerte oxidación generada por micropartículas de pirita

Fuente: CSIC

ElmarteW color rojo de la superficie de Marte podría deberse a la fuerte oxidación generada por la disolución de micropartículas de pirita en una atmósfera sin oxígeno, lo que generó radicales libres que a su vez indujeron la precipitación de óxidos y sulfatos de hierro, según muestra un estudio internacional liderado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) y con participación de la Universidad de Vigo y la NASA. Los resultados del estudio se publican en la revista Scientific Reports.

“Las reacciones químicas acuosas catalizadas por superficies minerales pueden condicionar significativamente la evolución geoquímica de su entorno”, explica Carolina Gil Lozano, investigadora del CSIC en el Centro de Astrobiología de Madrid y primera autora del estudio. “Durante su disolución, la pirita (el disulfuro de hierro más común en la Tierra) es capaz de producir sustancias muy reactivas, entre las que se encuentra el peróxido de hidrógeno (la convencional agua oxigenada) y un conjunto de radicales libres muy inestables”, añade. Gil Lozano explica que: “Aunque varios estudios han constatado la formación de estas sustancias químicas a partir de suspensiones de micropartículas de pirita en condiciones óxicas y anóxicas (en presencia o ausencia de oxígeno), no existe un análisis detallado de su evolución, algo necesario para comprender su función en los medios naturales”.

En este trabajo se han investigado las vías de formación y descomposición de dichas sustancias combinando experimentos de laboratorio y modelos numéricos. Para realizar los experimentos los investigadores han diseñado un reactor que les ha permitido registrar en tiempo real medidas realizadas con sensores y con espectrofotometría en atmósferas controladas. “Los datos obtenidos sugieren que el peróxido de hidrogeno (agua oxigenada) generado por la superficie de la pirita reacciona con el hierro liberado en el transcurro de su disolución (mediante la conocida como “reacción de Fenton”), formando una gran cantidad de radicales libres en solución”, detalla Gil Lozano. “A partir de estos datos, construimos un modelo cinético que utilizamos para analizar la evolución de los radicales libres implicados en el proceso”.

De forma general, los resultados obtenidos revelan que a lo largo de la disolución de microparticulas de pirita se puede generar un poder de oxidación notable a partir de éstos radicales libres, incluso partiendo de atmósferas que no contienen oxígeno, como parece haber sido el caso de Marte a lo largo de toda su historia. “Bajo este contexto, parece razonable suponer que esta reacción pudo haber contribuido de alguna forma a la oxidación del sustrato marciano, induciendo la precipitación de óxidos y sulfatos de hierro.

Por lo tanto, nuestros resultados pueden contribuir a explicar por qué la superficie de Marte es roja”, concluye Gil Lozano. Este trabajo ha recibido financiación del proyecto icyMARS, European Research Council Starting Grant número 307496, dirigido por Alberto G. Fairén en el Centro de Astrobiología. C. Gil-Lozano, A.F. Davila, E. Losa-Adams, A.G. Fairén and L.Gago-Duport. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces. Scientific Reports. Doi: 10.1038/srep43703

Últimas noticias publicadas Ver más

29 Abr 2025 | Almería
John Mather, Sara García y Sébastien Comerón Limbourg, protagonistas de las Jornadas Astronómicas de la UAL
El campus de la Universidad de Almería albergará una charla, un encuentro y un ‘Café con Ciencia’ protagonizados por estos tres nombres de enorme prestigio internacional, Premio Nobel de Física, primera mujer española astronauta de la ESA y astrofísico del IAC respectivamente, los próximos miércoles, jueves y viernes, días 14, 15 y 16 de mayo.
Leer más
24 Abr 2025 | Sevilla
Utilizan nanomateriales para desvelar nuevas perspectivas en el origen de los elementos más pesados del Universo
Este estudio internacional, en el que ha participado el Instituto de Ciencia de Materiales de Sevilla, ha sido pionero en el uso de nanomateriales para estudiar reacciones nucleares con núcleos radiactivos como los producidos en la colisión de estrellas de neutrones. Estas reacciones dan lugar a la formación de elementos pesados en el proceso denominado nucleosíntesis-r.
Leer más
21 Abr 2025 | Sevilla
La US instala una cámara avanzada en Calar Alto para desvelar los secretos de las nubes de Venus
El nuevo instrumento, capaz de tomar hasta 600 imágenes por segundo, abre una ventana al infrarrojo cercano para el telescopio de 1,23 m y se podrá utilizar para estudiar otros planetas y satélites del Sistema Solar, así como exoplanetas y fuentes extragalácticas.
Leer más
404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido