Volver

27 Jul 2021. Granada

Hallan la explosión de rayos gamma más breve producida por la muerte de una estrella masiva jamás detectada

El 26 de agosto de 2020, el telescopio espacial Fermi de la NASA detectó un pulso de radiación de alta energía que, con una duración de solo un segundo, batió un récord: se trataba de la explosión de rayos gamma (GRB) más corta causada por la muerte de una estrella masiva jamás vista. Su estudio, en el que participa el Instituto de Astrofísica de Andalucía (IAA-CSIC), muestra que la clasificación de estos estallidos según su duración no responde del todo a la realidad y abre nuevos escenarios en la muerte de las estrellas.

El 26 de agosto de 2020, el telescopio espacial Fermi de la NASA detectó un pulso de radiación de alta energía que, con una duración de solo un segundo, batió un récord: se trataba de la explosión de rayos gamma (GRB) más corta causada por la muerte de una estrella masiva jamás vista. Su estudio, en el que participa el Instituto de Astrofísica de Andalucía (IAA-CSIC), muestra que la clasificación de estos estallidos según su duración no responde del todo a la realidad y abre nuevos escenarios en la muerte de las estrellas.

Los GRBs son los fenómenos más energéticos del universo, detectables incluso si se producen en galaxias a miles de millones de años luz. Se clasifican como cortos o largos en función de si el evento dura más de dos segundos, y su duración se asocia con su origen: los estallidos largos se producen con la muerte de estrellas masivas, mientras que los estallidos cortos se han relacionado con la fusión de dos objetos compactos, como estrellas de neutrones.

Al agotar el hidrógeno que le sirve de combustible, el núcleo de una estrella masiva se colapsa y se forma un agujero negro.

«Ya sabíamos que algunos GRBs producidos por estrellas masivas podían registrarse como GRBs cortos, pero pensábamos que se debía a las limitaciones instrumentales», señala Bin-bin Zhang, de la Universidad de Nanjing (China) y de la Universidad de Nevada (Las Vegas). «Este estallido es especial porque se trata de un GRB de corta duración, pero sus propiedades apuntan a una estrella en colapso como origen: ahora sabemos que las estrellas moribundas también pueden producir estallidos cortos».

Bautizado como GRB 200826A por la fecha en que se produjo, este estallido es objeto de dos artículos publicados hoy en Nature Astronomy. El primero, dirigido por Zhang, explora los datos de rayos gamma. El segundo, dirigido por Tomás Ahumada, de la Universidad de Maryland y del Centro de Vuelo Espacial Goddard (NASA), describe el desvanecimiento del resplandor del GRB en múltiples longitudes de onda y la luz emergente de la explosión de supernova que le siguió.

«Creemos que este acontecimiento fue una especie de desvanecimiento, que estuvo a punto de no producirse», señala Ahumada. «Aun así, el estallido emitió catorce millones de veces la energía liberada por toda la Vía Láctea durante la misma fracción de tiempo, lo que lo convierte en uno de los GRB de corta duración más energéticos jamás vistos».

Las estrellas masivas también producen GRBs cortos al morir

Cuando una estrella muy masiva agota el hidrógeno que le sirve de combustible, su núcleo colapsa y se forma un agujero negro. A medida que la materia se arremolina en torno al agujero negro, parte de ella escapa a través de dos potentes chorros que se precipitan hacia el exterior casi a la velocidad de la luz en direcciones opuestas. Cada chorro perfora la estrella, produciendo una señal de rayos gamma que puede durar hasta varios minutos, mientras el chorro se aleja e interactúa con el gas circundante. Tras el estallido, la envoltura de la estrella se expande rápidamente en forma de supernova. Solo se detecta un GRB cuando uno de estos chorros apunta casi directamente hacia la Tierra.

Concepción artística de la formación de un agujero negro tras el colapso del núcleo de la estrella (punto negro central) y el lanzamiento de dos chorros que atraviesan la envoltura y producen, si la alineación es correcta, un GRB. Crédito: Goddard Space Flight Center (NASA).

Los grupos que firman los dos artículos proponen distintos escenarios para explicar este extraño estallido. Por ejemplo, el GRB 200826A pudo ser impulsado por chorros que apenas salieron de la estrella antes de apagarse, en lugar del caso más típico en el que los chorros emergen de la estrella y recorren grandes distancias produciendo un estallido de larga duración.

“Incluso, este estallido podría pertenecer a una clase de GRBs cortos que impliquen nuevos escenarios, como la fusión de una estrella normal y una de neutrones, o burbujas magnéticas inducidas por la rotación diferencial (distintas velocidades de rotación del ecuador y los polos de una estrella) como mecanismo de producción de emisiones de rayos gamma –señala Alberto Castro-Tirado, investigador del IAA-CSIC que participa en las dos publicaciones–. En términos más generales, este resultado demuestra claramente que la duración de un estallido no indica su origen”.

El hallazgo ayuda a resolver un viejo enigma. Aunque los GRBs largos parecen estar asociados a supernovas, se detecta un número mucho mayor de supernovas que de GRBs largos, una discrepancia que persiste incluso considerando que los chorros de los GRBs deben apuntar hacia nuestra línea de visión para ser detectados.

Observaciones multionda desde el espacio y desde la Tierra

El GRB 200826A constituyó una fuerte explosión en alta energía que fue detectada por el telescopio espacial Fermi, así como la misión Wind (NASA), Mars Odyssey (NASA) y el satélite INTEGRAL de la Agencia Espacial Europea (ESA), que participan en un sistema de localización de GRBs denominado Red Interplanetaria (IPN). Dado que el estallido llega a cada detector en distintos momentos, cualquier par de ellos puede utilizarse para acotar en qué lugar del cielo se produjo. Unas diecisiete horas después del GRB, la IPN redujo su localización a una zona relativamente pequeña del cielo en la constelación de Andrómeda.

El chorro en el momento de atravesar la estrella tras formarse el agujero negro en el centro de esta. Crédito: Goddard Space Flight Center (NASA).

Utilizando el Zwicky Transient Facility (ZTF) del Observatorio Palomar, el equipo escaneó el cielo en busca de cambios en la luz visible que pudieran estar relacionados con el desvanecimiento del resplandor posterior del GRB. De las más de veintiocho mil alertas de ZTF de la primera noche, solo una cumplía todos los criterios de búsqueda. Un día después del estallido, se halló emisión en rayos X en la misma región y dos días después en ondas de radio. Gracias a medidas con el Gran Telescopio Canarias (La Palma), el equipo demostró que la luz del GRB había tardado 6.600 millones de años en llegar hasta nosotros (esto supone el 48% de la edad actual del universo, que es de 13.800 millones de años).

Pero para demostrar que este breve estallido procedía de una estrella en colapso era preciso captar también el brillo de la supernova emergente. Observaciones con el telescopio Gemini North permitieron detectar, a partir de 28 días después del estallido, una fuente en el infrarrojo cercano: la supernova.

Referencia bibliográfica: 

Ahumada, T. et al, “Discovery and confirmation of the shortest gamma ray burst from a collapsar”, Nature Astronomy, https://www.nature.com/articles/s41550-021-01428-7

Zhang, B.-B. et al,  “Peculiarly Short-duration Gamma-Ray Burst from Massive Star Core Collapse”, Nature Astronomy, https://www.nature.com/articles/s41550-021-01395-z

Últimas noticias publicadas Ver más

06 Dic 2024 | Internacional
El Hubble observa la formación de estrellas en la galaxia NGC 1637
Esta imagen captada por el telescopio espacial Hubble de la NASA/ESA es NGC 1637, una galaxia espiral ubicada a 38 millones de años luz de la Tierra en la constelación de Eridanus.
Leer más
05 Dic 2024 | Granada
El proyecto LPI explorará nuevas fronteras en astronomía cuántica desde La Palma
El Instituto de Astrofísica de Andalucía lidera el proyecto LPI (La Palma Interferometer) que busca realizar observaciones astronómicas con una resolución espacial mil veces superior a la de los telescopios espaciales Hubble y James Webb. LPI cuenta con la colaboración de diversos centros de investigación de España, Italia, los países nórdicos y México, que trabajan para consolidar una instalación científica de referencia en el ámbito internacional.
Leer más
02 Dic 2024 | Granada
Nuevas evidencias de materia orgánica en Ceres, el planeta con más agua después de la Tierra
Gracias a un enfoque innovador que combina alta resolución espacial y espectral, el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha podido analizar la distribución de compuestos orgánicos en Ceres con un nivel de detalle sin precedentes. El estudio allana el camino para regresar en un futuro no muy lejano a Ceres, con el objetivo de esclarecer la naturaleza del material encontrado y analizar sus posibles implicaciones astrobiológicas.
Leer más
404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido