Volver

12 Mar 2024. Internacional

La conexión entre la Tierra y Marte impulsa las corrientes oceánicas profundas

Un análisis de los sedimentos oceánicos revela un ciclo de 2,4 millones de años donde se conectan las órbitas del planeta rojo y el nuestro con variaciones en el clima y las corrientes del fondo marino. El estudio sugiere que remolinos gigantes en océanos que se calientan podrían contrarrestar el previsible estancamiento de la corriente del Golfo.

Fuente: Agencia SINC

Científicos de las universidades de Sidney (Australia) y la Sorbona (Francia) han utilizado el registro geológico de las profundidades marinas para descubrir una conexión entre las órbitas de la Tierra y Marte, los patrones de calentamiento global del pasado y la aceleración de la circulación oceánica profunda.

Los autores del estudio, publicado en la revista Nature Communications, han descubierto un sorprendente ciclo de 2,4 millones de años en el que las corrientes del fondo marino aumentan, lo que, a su vez, está relacionado con periodos de mayor incidencia solar y un clima más cálido.

Para realizar la investigación se utilizaron datos de perforaciones en los fondos marinos recogidos desde hace más de medio siglo y se analizaron cambios en la órbita terrestre.

Mapa de localización de los lugares de perforación. Imagen: A. Dutkiewicz et al./Nature Communications.

«Una interrupción en la sedimentación indica corrientes marinas profundas vigorosas, mientras que su acumulación continua indica condiciones más tranquilas», explica la autora principal, Adriana Dutkiewicz, de la Facultad de Geociencias de la Universidad de Sidney.

«La combinación de esta información con análisis espectrales (una técnica para estimar la potencia de una señal y descubrir periodicidades en series temporales de datos) nos ha permitido determinar la frecuencia de las interrupciones de la sedimentación a lo largo de 65 millones de años», añade.

Así descubrieron que la fuerza de las corrientes marinas profundas cambia en ciclos de 2,4 millones de años. Estos se denominan «grandes ciclos astronómicos» y se producen por las interacciones entre las órbitas de planetas como la Tierra y Marte. Sin embargo, rara vez se detectan pruebas de ello en el registro geológico.

«Nos sorprendió encontrar estos ciclos en nuestros datos sedimentarios de aguas profundas, y solo hay una forma de explicarlos: están vinculados a otros en las interacciones entre Marte y la Tierra en órbita alrededor del Sol», apunta Dutkiewicz, quien comenta: «Venus y Júpiter también influyen en la órbita de nuestro planeta, pero a escalas de tiempo diferentes (con un ciclo de unos 405.000 años) y nuestros datos no lo captan».

Otro de los autores de la universidad australiana, el profesor Dietmar Müller, señala: «Los campos gravitatorios de los planetas del sistema solar interfieren entre sí y esta interacción, denominada resonancia, modifica la excentricidad planetaria, una medida de cómo se acercan a la circularidad sus órbitas».

Para la Tierra esto supone periodos de mayor radiación solar entrante y clima más cálido en esos ciclos de 2,4 millones de años. Los investigadores descubrieron que estos se correlacionan con una mayor aparición de rupturas en el registro de las profundidades marinas, relacionadas con una circulación oceánica más potente a esas profundidades.

Adriana Dutkiewicz, investigadora de la Facultad de Geociencias de la Universidad de Sidney. Imagen: University of Sydney.

Dutkiewicz explica a SINC cómo se relacionan todos estos factores: «La precesión [cambios en el movimiento del eje de rotación, como el de una peonza] de los perihelios [puntos de la órbita más cercanos a su estrella] de la Tierra y Marte cambia gradualmente a lo largo de un período de 2,4 millones de años, y esto cambia la excentricidad de la órbita de nuestro planeta alrededor del sol».

«La Tierra tiene máximos de excentricidad –continúa–, con picos de insolación, por tanto, mayor radiación solar entrante y clima más cálido. Esto se vincula con corrientes marinas profundas más vigorosas, más erosión del fondo marino y desarrollo de interrupciones que vemos en los datos sedimentarios».

Remolinos profundos en mares cálidos

El estudio revela que los remolinos profundos fueron un componente importante de los antiguos mares cálidos, un resultado inesperado frente a las observaciones y los modelos oceánicos sobre el calentamiento global actual. Estos plantean que el deshielo marino podría detener la denominada circulación de vuelco meridional del Atlántico (AMOC) que impulsa la corriente del Golfo y mantiene los climas templados en Europa.

Müller detalla: «Sabemos que existen al menos dos mecanismos distintos que contribuyen a la mezcla de aguas profundas en los océanos. El AMOC es uno de ellos, pero los remolinos oceánicos profundos parecen desempeñar un papel importante en los climas cálidos para mantener el océano ventilado».

Estos remolinos son como torbellinos gigantes y a menudo alcanzan el fondo marino abisal, lo que provoca la erosión del suelo marino y grandes acumulaciones de sedimentos como ocurre en los ventisqueros.

Según Dutkiewicz: «Nuestros datos sobre las profundidades marinas, que abarcan 65 millones de años, indican que los océanos más cálidos tienen una circulación profunda más vigorosa. Esto podría evitar potencialmente que las aguas oceánicas se estanquen, aunque la circulación de vuelco meridional del Atlántico se ralentizara o se detuviera por completo».

Aún no se sabe muy bien cómo se desarrollará en el futuro la interacción entre los distintos procesos que impulsan la dinámica de los océanos profundos y la propia vida oceánica, pero los autores esperan que, en cualquier caso, sus nuevos resultados ayuden a construir modelos climáticos mejores.

Últimas noticias publicadas Ver más

20 Dic 2025 | Jaén
Confirman que la orientación solar del eje de una de las tumbas en las que excava la Universidad de Jaén en Asuán coincide con el amanecer del solsticio de invierno
Investigadores del grupo Sistemas Fotogramétricos y Topométricos de la UJA han comprobado in situ los resultados obtenidos en estudios previos en la tumba QH33 de la necrópolis de Qubbet el Hawa en Asuán (Egipto).
Leer más
19 Dic 2025
Comienza la estación más corta y fría en el hemisferio norte
El invierno en el hemisferio norte durará aproximadamente 88 días y 23 horas y terminará el 20 de marzo de 2026 con el comienzo de la primavera. Algunos fenómenos de interés astronómico en este periodo serán las lluvias de meteoros de las úrsidas, cuyo máximo será hacia el 22 de diciembre, y las cuadrántidas, cuyo máximo se espera hacia el 3 de enero. Respecto a las lunas llenas del invierno tendrán lugar el 3 de enero, 1 de febrero y el 3 de marzo.
Leer más
17 Dic 2025
Reconstruyen la interacción entre el jet de una estrella joven y su entorno con un detalle inédito gracias al telescopio ALMA
Este hallazgo se ha publicado en Nature Astronomy y ha permitido confirmar por primera vez un modelo teórico planteado hace tres décadas sobre la dinámica de los jets estelares. Las imágenes, de un detalle sin precedentes, han sido obtenidas por un equipo del Instituto de Astrofísica de Andalucía (IAA-CSIC) y muestran “cortes” del jet de una estrella joven, revelando su estructura interna y cómo interactúa con el entorno.
Leer más
Ir al contenido