Volver

11 Feb 2016.

Las ondas gravitacionales explicadas para principiantes

Fuente: SINC

Las-ondas-gravitacionales-explicadas-para-principiantes_image_380

Las ondas gravitacionales

¿Qué son? Son ondulaciones concéntricas que encogen y estiran la ‘tela’ del espacio-tiempo mientras viajan a la velocidad de la luz. Se originan por eventos muy violentos, como la fusión de dos agujeros negros. Este sería el caso de la primera onda gravitacional detectada: GW150914.

¿Quién fue el primero en pensar en ellas? La existencia de estas ondas la predijo Albert Einstein hace un siglo. Son consecuencia de su teoría general de la relatividad, donde se plantea que el espacio-tiempo es curvo y que objetos con masa muy acelerados cambian la curvatura de ese espacio-tiempo y producen ondas gravitacionales.

¿Cuándo y dónde se han detectado? El 14 de septiembre de 2015 a las 11:51 (hora europea de verano) por los dos detectores gemelos del Observatorio por Interferometría Láser de Ondas Gravitacionales (LIGO, por sus siglas en inglés), en EE UU.

¿Es la primera vez que se han visto? Aunque los científicos ya habían deducido su existencia, hasta ahora no se habían podido detectar directamente. Hace más de 50 años que diversos experimentos en todo el mundo (como LIGO en EE UU y VIRGO en Europa) han tratado de conseguir la prueba experimental. Ha sido muy difícil encontrarlas debido a que sus amplitudes son extremadamente pequeñas y los grandes eventos que las producen son poco frecuentes. Aunque son causadas por el movimiento de la masa, la mayoría son tan débiles que no tienen ningún efecto medible.

¿Por qué son tan tenues? Cuando se producen eventos cósmicos violentos, hacen que el tejido del espacio vibre como un tambor. Las ondulaciones del espacio-tiempo emanan en todas direcciones, viajando a la velocidad de la luz y distorsionando físicamente todo a su paso. Pero cuanto más se alejan estas ondas de su origen, más pequeñas se vuelven. Una distorsión inicial en el espacio de varios kilómetros causada por ellas se queda reducida a solo una fracción del tamaño del protón caundo llega a la Tierra.

¿Cómo se han detectado? Para que la tecnología actual haya podido detectarlas se han tenido que buscar aquellas –todavía extremadamente tenues– irradiadas a través del cosmos desde sucesos extremadamente violentos, como las explosiones de estrellas y colisiones de agujeros negros. Solo laboratorios como LIGO, equipados con instrumentos láser de ultraprecisión, son capaces de detectarlas a través de las pequeñísimas perturbaciones que provocan en los haces de luz de sus detectores.

¿No hubo ya un anuncio sobre estas ondas hace un par de años? En 2014 el equipo del telescopio BICEP2 anunció haber descubierto un tipo especial de ondas gravitacionales: las primigenias que surgieron tras el Big Bang. La huella que dejaron en la denominada radiación de fondo de microondas (CMB) es lo que se supone observó ese telescopio desde la Antártida. Pero los datos del satélite Planck confirmaron que aquellos resultados no tuvieron en cuenta el polvo galáctico, por lo que no eran válidos. A corto plazo LIGO no tiene la capacidad de detectar esas ondas gravitacionales primigenias, por lo que habrá que seguir confiando en instrumentos como BICEP2.

¿De qué vale haber detectado por fin ondas gravitacionales? Estas ondas proporcionan información sobre los objetos que las producen, los eventos más violentos del universo como las supernovas o las colisiones y fusiones de agujeros negros y estrellas de neutrones. Su detección abre el universo a investigaciones completamente nuevas, además de facilitar el camino del Premio Nobel a sus descubridores.

El experimento LIGO

VistaAerea-LigoCaltechVistas aéreas de las estaciones de LIGO en Hanford (Washington) y Livingston (Luisiana). / JPL Caltech

¿Qué es? Es un sistema de dos detectores idénticos construidos en Hanford (estado de Washington) y Livingston (Luisiana) para detectar vibraciones increíblemente pequeñas generadas por el paso de ondas gravitacionales. Sus dos estaciones están separadas 3.000 km, lo que permite comparar y confirmar los datos sobre cualquier perturbación espacio-temporal provocada por estas ondas.

¿Quiénes participan en él? La colaboración científica LIGO está integrada por más de mil científicos de universidades de quince países, incluido el Grupo de Relatividad y Gravitación de la Universidad de las Islas Baleares. El experimento inicial fue concebido y construido por investigadores de los institutos MIT y Caltech, y financiado por la National Science Foundation en EE UU.

¿Qué había detectado LIGO hasta ahora? Entre los años 2002 y 2010, LIGO estuvo funcionando sin detectar ondas gravitacionales. No ha sido hasta el 18 de septiembre de 2015, y tras una inversión de 200 millones de dólares, cuando un rebautizado Advanced Ligo ha empezado a operar con instrumentos mucho más avanzados.

interferometro_ligo

Esquema de un interferómetro láser. / LIGO/NSF

¿Qué pasa dentro de LIGO? En cada detector, un haz de luz láser se divide en dos y se envía por túneles iguales de vacío que miden 4 km de longitud y están dispuestos de forma perpendicular. Dentro hay unos interferómetros que hacen rebotar la luz láser entre espejos situados en los extremos de estos gigantescos tubos.

Si una onda gravitacional pasa por estos instrumentos, extienden y comprimen la longitud de los brazos junto con el resto del espacio. La luz de uno de los haces viaja un poco más allá que la del otro en una pequeñísima fracción del ancho de un átomo, y esto se puede medir. De hecho, los dos brazos funcionan como reglas de luz dispuestas en ángulo recto.

¿Tiene compañeros en otras partes del mundo? Desde LIGO se pasan notificaciones a 75 observatorios astronómicos de todo el mundo, que han acordado apuntar sus telescopios hacia cualquier punto del cielo para buscar y confirmar señales electromagnéticas correspondientes a posibles detecciones de ondas gravitacionales.

Este año está previsto que vuelva a funcionar el detector similar italo-francés Virgo, cerca de Pisa, que cerró en 2011 después de no observar nada durante años. La extensión de la red global de detectores incluye a LIGO –que estudia tener un tercer detector en India–, Advanced Virgo y KAGRA en Japón. Tener tres detectores conectados en línea permitiría triangular las fuentes de las ondas gravitacionales y abrir una nueva era en las observaciones astronómicas.

Últimas noticias publicadas Ver más

16 Ene 2025 | Granada
Sonificación de datos: una nueva forma de estudiar el universo
Un equipo coliderado por el Instituto de Astrofísica de Andalucía ha creado ViewCube, una innovadora herramienta que permite no solo visualizar datos astronómicos, sino también escucharlos. Este avance incorpora una nueva dimensión sensorial al análisis de datos complejos, al tiempo que promueve la inclusión y accesibilidad, facilitando la participación activa de personas con discapacidad visual en el estudio de las galaxias.
Leer más
16 Ene 2025 | España
La misión NewAthena proyecta un observatorio de rayos X para estudiar el cosmos
Combina datos de luz, ondas gravitacionales y neutrinos para explorar fenómenos del universo. Desarrollado por la Agencia Europea del Espacio (ESA), cuenta con la participación, entre otros centros nacionales e internacionales, del Instituto de Física de Cantabria  y el Instituto de Ciencias del Espacio.
Leer más
15 Ene 2025 | Internacional
Estados Unidos lanza la misión Blue Ghost a la Luna para impulsar la exploración humana
La NASA, en colaboración con Firefly Aerospace y SpaceX, ha lanzado una misión con el objetivo de explorar nuestro el satélite. El proyecto incluye diez instrumentos científicos y tecnológicos, en apoyo al programa Artemis, que pretende establecer una presencia humana permanente en la próxima década.
Leer más
404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido