Volver

11 Sep 2020. Granada

Desvelan el mecanismo molecular que conecta las emisiones oceánicas de yodo y la formación de partículas atmosféricas

La formación de nuevas partículas en la atmósfera es una de las incertidumbres más significativas en los modelos climáticos. Aunque se sabe desde hace dos décadas que también los óxidos de yodo forman partículas en la baja atmósfera, la inclusión de este proceso en modelos químico-climáticos se ha visto impedida hasta ahora por el desconocimiento del mecanismo de conversión de gas en partícula.

Un estudio internacional liderado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) combina experimentos, cálculos teóricos y modelado numérico para construir un mecanismo molecular que conecta emisiones oceánicas de compuestos yodados y formación de partículas. El estudio muestra que la conversión de gas a partícula tiene lugar primariamente a través de la aglomeración de óxidos de yodo y que la composición de las partículas nanométricas (ácido yódico) se debe al posterior procesamiento de estos clústeres anhidridos en presencia de humedad atmosférica. Los hallazgos, que se publican en la revista Nature Communications, ponen de manifiesto la gran capacidad de los óxidos de yodo para formar nuevas partículas, y descartan que sea el propio ácido yódico en fase gaseosa el que da lugar al fenómeno, deshaciendo el cuello de botella químico que constituye esta molécula.

“Desde hace décadas los investigadores de la química y espectroscopia de gases yodados han observado con fascinación -y algo de fastidio- la rápida formación de partículas en sus reactores, que a menudo era engorrosa por la deposición de estas y el consiguiente bloqueo de los orificios de muestreo. El descubrimiento de las formaciones explosivas de partículas en la baja atmosfera dio una dimensión inesperada a este fenómeno, y ahora hemos vuelto al laboratorio para investigarlo con técnicas específicas avanzadas y desvelar el mecanismo que lo gobierna”, señala Juan Carlos Gómez Martín, investigador del CSIC en el Instituto de Astrofísica de Andalucía y autor del estudio.

Nueva formación de partículas inducida por yodo ha sido reportada por ejemplo en la Ria de Arousa (esquina superior derecha) por el mismo grupo que lidera el presente trabajo. El mecanismo de formación de partículas se ha investigado en laboratorio este estudio usando técnicas laser y espectrometría de masas/ Juan Carlos Gomez Martin

Nueva formación de partículas inducida por yodo ha sido reportada por ejemplo en la Ria de Arousa (esquina superior derecha) por el mismo grupo que lidera el presente trabajo. El mecanismo de formación de partículas se ha investigado en laboratorio este estudio usando técnicas laser y espectrometría de masas/ Juan Carlos Gomez Martin

El mecanismo molecular desvelado en este trabajo puede ser incluido ahora en modelos atmosféricos para llevar a cabo la primera evaluación del impacto global de la formación de partículas yodadas en el clima. “Actualmente los modelos no incluyen esta fuente de nuevas partículas atmosféricas, y por ello pueden estar infraestimando el efecto de los aerosoles en el balance de radiación. Esto es particularmente relevante dado que la emisión global de yodo a la atmosfera se ha triplicado en los últimos 70 años como consecuencia de la contaminación por ozono antropogénico, y se espera que este incremento continúe, por lo que el papel de la formación de partículas yodadas puede tornarse muy relevante en el futuro”, añade Alfonso Saiz-López, autor del estudio e investigador del CSIC en el Instituto de Química Física Rocasolano.

La investigación se enmarca en el proyecto “Climate dimension of natural halogens in the Earth system: Past, present, future (CLIMAHAL)”, un programa Consolidator Grant del Consejo Europeo de Investigación.

Referencia:
Juan Carlos Gómez Martín, Thomas R. Lewis, Mark A. Blitz, John M.C. Plane, Manoj Kumar, Joseph S. Francisco and Alfonso Saiz-Lopez. A gas-to-particle conversion mechanism helps to explain atmospheric particle formation through clustering of iodine oxides, Nature Communications.  https://doi.org/10.1038/s41467-020-18252-8

Últimas noticias publicadas Ver más

06 Nov 2025 | Internacional
Lanzan con éxito el satélite Sentinel 1-D
La misión Sentinel-1, que proporciona visión por radar al programa de observación de la Tierra Copernicus, cuenta con una nueva incorporación a su familia de satélites, con la llegada a órbita de Sentinel-1D, el último de la innovadora primera generación. El lanzamiento tuvo lugar a las 22:02 CET (18:02 hora local) del martes 4 de noviembre, a bordo de un lanzador Ariane 6 desde el puerto espacial europeo en la Guayana Francesa.
Leer más
27 Oct 2025 | Córdoba
La UCO se prepara para el “Trío Ibérico” de eclipses con un nuevo ciclo de Mirando al Cielo
Cuatro conferencias astronómicas sobre eclipses solares componen el programa de ‘Mirando al Cielo. Conversaciones en torno al Universo’ que se celebrará cada miércoles de noviembre en el Rectorado.
Leer más
24 Oct 2025
Cambio de hora: la madrugada del domingo a las tres los relojes se atrasarán una hora
Como publica el Real Instituto y Observatorio de la Armada en su web, la madrugada del domingo 26 de octubre, a las tres (las dos en Canarias), los relojes se atrasarán una hora y volverán a ser las dos. A partir de este día las jornadas serán más cortas en términos de luz diurna. Esta medida, que está regulada por directivas de la Unión Europea y es obligatoria para todos los países miembros, tiene defensores y detractores entre la propia comunidad investigadora y ha sido objeto de estudios científicose. Esté a favor o en contra de ella, el domingo no olvide comprobar que su reloj y otros dispositivos móviles se han ajustado al horario de invierno. 
Leer más
Ir al contenido