Volver

10 Ene 2019.

Revelan el origen de los chorros escupidos por un agujero negro

Los estallidos de rayos X que emanan de algunos agujeros negros cuando absorben material proceden de su corona de gas caliente, que se contrae durante el proceso, y no del disco de acreción de material que rodea estos oscuros objetos. Así lo revela la observación de uno de estos brillantes fenómenos realizada desde la Estación Espacial Internacional.

Fuente: Agencia SINC

agujero negro , estrella , rayos X , Universo

Un agujero negro de tamaño estelar es tan grande como una ciudad pero con una masa hasta diez veces la del Sol. Cuando uno de ellos engulle el material procedente de un objeto próximo, como una estrella, emite potentes chorros de rayos X.

Se trata de eventos transitorios, que brillan durante un tiempo y luego se desvanecen. Su detección sirve para estudiar la evolución de todo el sistema, aunque es objeto de debate si estos destellos de rayos X los genera el disco de acreción (un anillo de escombros que caen en el agujero negro) o la corona, una región compacta de gas caliente situada encima.

Ahora un equipo internacional de astrofísicos, liderado por la investigadora Erin Kara de la Universidad de Maryland (EE UU), ha analizado el evento transitorio de agujero negro llamado MAXI J1820 + 070. Se detectó en marzo de 2018 y la evolución de su emisión de rayos X se ha monitorizado con el instrumento Neutron star Interior Composition Explorer (NICER) desde la Estación Espacial Internacional.

La revista Nature recoge en portada este estudio sobre un agujero negro, que engulle material desde una estrella. / Aurore Simonnet – Nature

Cuando los investigadores siguieron el fenómeno, encontraron que la corona que rodea el agujero negro se encogía, mientras que apenas se producía una pequeña modificación en el tamaño del disco de acreción.

El estudio, que esta semana aparece en portada de la revista Nature, indica «que es la contracción de la corona y no los cambios en el tamaño del disco de acreción lo que causa los cambios observados». Es decir, que la evolución de los estallidos de rayos X está controlada por la corona del agujero negro mientras este absorbe material.

Para llegar a esta conclusión, el método que han empleado los autores es el mapeo de reverberación, que utiliza la luz para analizar la estructura de la materia alrededor de agujeros negros supermasivos (del tamaño de un sistema solar y con millones de masas solares). Ahora Kara y sus colegas lo han aplicado con éxito a agujeros negros mucho más pequeños.

Cómo el eco de una gota en una cueva

Según explica la profesora Daryl Haggard del McGill Space Institute (Canadá) en un artículo paralelo publicado también en Nature, “para tener una idea de cómo funciona esta técnica puedes imaginar que escuchas el agua goteando dentro de una cueva. Primero oyes el sonido de cada gota y luego su eco cuando el sonido rebota en las paredes. Cuanto más grande es la cueva, más largo es el retraso de la reverberación entre el goteo y el eco”.

“Este sonido del goteo es análogo a la luz (de rayos X) que se emite desde la corona de un agujero negro –prosigue la experta–, y el eco es similar a la luz de la corona que interactúa con el borde interior del disco de acreción y se vuelve a emitir”.

De esta forma se ha comprobado que el retraso del tiempo de reverberación entre ambas emisiones lumínicas es más corto que lo observado anteriormente en agujeros negros de masa estelar, lo que indica que su disco interno permanece cerca de él, apenas se mueve, y es la corona la que evoluciona con el tiempo.

Dos modelos de agujero negro a partir de mapas de reverberación. En el primer caso se observa un retardo de reverberación largo entre los rayos X emitidos desde la corona y los que interactúan con el borde interior del disco de acreción y se vuelven a emitir, lo que implica que ese borde está lejos del agujero negro y es el disco el que evoluciona con el tiempo (flechas naranjas). Sin embargo, Kara y sus colegas han detectado retrasos de reverberación cortos, lo que indica que el disco interno permanece cerca del agujero negro sin apenas moverse y es la corona la que evoluciona. / Daryl Haggard – Nature

 


Los 131 segundos de parpadeo de otro agujero negro

Otro estudio, presentado esta semana en la revista Science y en el congreso de la Sociedad Astronómica de EE UU que se está celebrando en Seattle, ofrece datos sobre un raro fenómeno observado el 22 de noviembre de 2014: el agujero negro supermasivo del centro de una galaxia engulló a una estrella pasajera y generó una explosión de rayos X.

Ahora, los datos recogidos revelan que el pulso de rayos X es intenso, estable y periódico. La señal emana de un área muy cercana al punto de no retorno del agujero negro, parpadea cada 131 segundos y persiste durante al menos 450 días. El agujero negro gira al 50 % de la velocidad de la luz.

Actualizado el 10/01/2019 a las 8:00

Referencias bibliográficas:

Erin Kara et al.: “The corona contracts in a black-hole transient”. Daryl Haggard: “Black hole goes with the flow”. Nature, 9 de enero de 2019.

Dheeraj R. Pasham, Ronald A. Remillard et al.: “A loud quasi-periodic oscillation after a star is disrupted by a massive black hole”. Science, 9 de enero de 2019.

Últimas noticias publicadas Ver más

23 Ene 2025 | Internacional
Descubren que el asteroide visitante de la Tierra podría ser un trozo de roca lunar
El objeto cercano a la Tierra probablemente fue expulsado al espacio después de un impacto hace miles de años. Ahora, podría aportar nuevos conocimientos a las investigaciones sobre asteroides y la Luna.
Leer más
22 Ene 2025 | Granada
Avances en el M87*: nuevos detalles del flujo de acreción del agujero negro
La colaboración del EHT, en la que participa el Instituto de Astrofísica de Andalucía, avanza en el estudio del agujero negro supermasivo M87*, ubicado en el centro de la galaxia M87. El análisis realizado, que combina observaciones de 2017 y 2018, ha revelado nuevos datos sobre la estructura y dinámica del plasma cercano al horizonte de sucesos de M87*.
Leer más
21 Ene 2025 | Granada
Detectan un flujo de viento supersónico en el ecuador de un exoplaneta gigante
El IAA forma parte del equipo internacional que ha identificado el viento más rápido jamás medido en un planeta, registrado en la atmósfera del exoplaneta gigante WASP-127b, situado a más de 500 años luz de la Tierra. El hallazgo, que proporciona información única sobre el clima extremo en un mundo distante, se logró con el instrumento CRIRES+.
Leer más
404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido