Volver

24 Mar 2021. Granada

Se observan los campos magnéticos en el borde del agujero negro de la galaxia M87

La colaboración del Telescopio del Horizonte de Sucesos (EHT por sus siglas en inglés), que produjo la primera imagen de un agujero negro, ha revelado hoy una nueva perspectiva del objeto masivo en el centro de la galaxia M87: cómo se ve en luz polarizada. Se trata de la primera vez que los astrónomos han podido medir polarización, la “firma” de los campos magnéticos, tan cerca del borde de un agujero negro. Las observaciones son clave para explicar cómo la galaxia M87, ubicada a 55 millones de años luz de distancia, puede lanzar chorros de material muy energéticos desde su núcleo.

agujero negro , EHT , M87 , Telescopio del Horizonte de Sucesos

La colaboración del Telescopio del Horizonte de Sucesos (EHT por sus siglas en inglés), que produjo la primera imagen de un agujero negro, ha revelado hoy una nueva perspectiva del objeto masivo en el centro de la galaxia M87: cómo se ve en luz polarizada. Se trata de la primera vez que los astrónomos han podido medir polarización, la “firma” de los campos magnéticos, tan cerca del borde de un agujero negro. Las observaciones son clave para explicar cómo la galaxia M87, ubicada a 55 millones de años luz de distancia, puede lanzar chorros de material muy energéticos desde su núcleo.

«Estamos ante una evidencia única para comprender cómo se comportan los campos magnéticos alrededor de los agujeros negros, y cómo la actividad en esta región tan compacta del espacio puede impulsar poderosos chorros que se extienden mucho más allá de la galaxia», apunta Monika Mościbrodzka, coordinadora del grupo de trabajo de polarimetría del EHT y profesora asistente en la Universidad de Radboud (Países Bajos).

El 10 de abril de 2019 se publicó la primera imagen de un agujero negro, que revelaba una estructura brillante en forma de anillo con una región central oscura: la sombra del agujero negro. Desde entonces, la colaboración EHT ha profundizado en los datos sobre el objeto supermasivo en el corazón de la galaxia M87 recopilados en 2017 y ha descubierto que una fracción significativa de la luz alrededor del agujero negro M87 está polarizada.

Imagen del agujero negro supermasivo en M87 en luz polarizada. Se trata de la primera vez que los astrónomos pueden medir polarización, una “firma” de los campos magnéticos, tan cerca de un agujero negro. Las líneas indican la orientación de la polarización, relacionada con el campo magnético en torno a la sombra del agujero negro. Fuente: Colaboración EHT.

“Este trabajo es un hito importante: la polarización de la luz transporta información que nos permite comprender mejor la física detrás de la imagen que vimos en abril de 2019, algo que antes no era posible –explica Iván Martí-Vidal, también coordinador del grupo de trabajo de polarimetría del EHT e Investigador Distinguido GenT de la Universidad de Valencia–. Revelar esta nueva imagen en luz polarizada ha requerido años de trabajo debido a las complejas técnicas involucradas en la obtención y análisis de los datos».

La luz se polariza cuando atraviesa ciertos filtros, como las lentes de las gafas de sol polarizadas, o cuando se emite en regiones calientes y magnetizadas del espacio. De la misma manera que las gafas de sol polarizadas solo dejan pasar una orientación determinada del campo eléctrico de los rayos del Sol, los astrónomos pueden obtener información sobre la orientación del campo eléctrico de la luz que viene del espacio usando unos polarizadores instalados en los telescopios. Específicamente, la polarización permite cartografiar las líneas de campo magnético presentes en el borde interior del agujero negro.

«Las imágenes polarizadas recientemente publicadas son clave para comprender cómo el campo magnético permite que el agujero negro “devore” materia y lance poderosos chorros», apunta Andrew Chael, miembro de la colaboración de EHT e investigador del Centro Princeton de Ciencia Teórica (EEUU).

Los brillantes chorros de energía y materia que emergen del núcleo de M87 y se extienden al menos hasta cinco mil años luz de su centro son una de las características más misteriosas y enérgicas de la galaxia. La mayor parte de la materia que se encuentra cerca del borde de un agujero negro cae dentro. Sin embargo, algunas de las partículas circundantes escapan momentos antes de la captura y son expulsadas al espacio en forma de chorros.

El equipo investigador se ha basado en diferentes modelos de cómo se comporta la materia cerca del agujero negro para comprender mejor este proceso. Pero todavía no saben exactamente cómo se propulsan chorros más extensos que la propia galaxia desde su región central, tan pequeña en tamaño como el Sistema Solar, ni cómo cae la materia en el agujero negro. Con la nueva imagen del EHT del agujero negro, los astrónomos han logrado atisbar por primera vez la región límite del agujero negro donde ocurre esta interacción entre la materia que fluye hacia adentro y la que es expulsada.

Las observaciones proporcionan información nueva sobre la estructura de los campos magnéticos en el borde del agujero negro. El equipo descubrió que solo los modelos teóricos con gas fuertemente magnetizado pueden explicar lo que están viendo en el horizonte de sucesos.

“Las observaciones sugieren que los campos magnéticos en el borde del agujero negro son lo suficientemente intensos como para retener el gas caliente y ayudarlo a resistir la atracción de la gravedad. Solo el gas que se desliza a través del campo puede girar en espiral hacia el horizonte de eventos”, explica Jason Dexter, profesor asistente de la Universidad de Colorado Boulder (EEUU) y coordinador del grupo de trabajo de teoría del EHT.

Composición de tres imágenes en luz polarizada de la región central en M87, incluyendo de arriba abajo las imágenes obtenidas con ALMA, VLBA, y el EHT. Fuente: Colaboración EHT, ALMA (ESO/NAOJ/NRAO), Goddi et al.; VLBA (NRAO), Kravchenko et al.; J. C. Algaba, I. Martí-Vidal.

“Parte del material circundante que no cae al agujero negro es arrastrado por el campo magnético dando lugar a los poderosos chorros que observamos en los núcleos activos de galaxias, como M87, algo que no habíamos podido observar hasta ahora”, señala José Luis Gómez, coordinador del grupo de trabajo de cartografiado del EHT y líder del grupo del EHT en el Instituto de Astrofísica de Andalucía (IAA-CSIC), del que forman parte también los investigadores Rocco Lico, Guang-Yao Zhao, Antonio Fuentes, y Antxon Alberdi. “Múltiples técnicas de análisis de los datos del EHT se han usado para corroborar estos resultados que nos permiten restringir la física que produce y alimenta estos objetos extremos”, añade Rocco Lico (IAA-CSIC).

Para observar el corazón de la galaxia M87, la colaboración vinculó ocho telescopios de todo el mundo, entre ellos el radiotelescopio IRAM de 30 metros en Pico Veleta (Sierra Nevada), para crear un telescopio virtual del tamaño de la Tierra, el EHT. La impresionante resolución obtenida con el EHT es equivalente a la necesaria para medir la longitud de una tarjeta de crédito en la superficie de la Luna.

Esto permitió al equipo observar directamente la sombra del agujero negro y el anillo de luz a su alrededor, con la nueva imagen de luz polarizada que muestra claramente que el anillo está magnetizado. Los resultados se publican hoy en dos artículos separados en The Astrophysical Journal Letters firmados por la colaboración EHT. La investigación involucró a más de trescientos investigadores de múltiples organizaciones y universidades de todo el mundo.

«El EHT avanza rápido, con actualizaciones tecnológicas que se están realizando en los distintos telescopios que conforman el EHT, incluida la suma de nuevos observatorios. Esperamos que las futuras observaciones del EHT revelen con mayor precisión la estructura del campo magnético alrededor del agujero negro y nos digan más sobre la física del gas caliente en esta región», concluye Jongho Park, miembro de la colaboración de EHT e investigador de la Academia Sinica (Instituto de Astronomía y Astrofísica de Taipei).

Antxon Alberdi, director del IAA-CSIC y miembro de la colaboración EHT, subraya la importancia de los resultados obtenidos para el instituto y para el proyecto Severo Ochoa – IAA, de cuyo plan estratégico las investigaciones con el EHT son pieza fundamental.

Material multimedia

Vídeo: Viaje al interior de Messier 87 incluyendo la imagen polarizada del anillo en torno al agujero negro central. Fuente: ESO.  MP4 [81 Mb], UHD AVI [3.3 Gb]

  • Video: La imagen de la sombra del agujero negro en M87 vista a través de un polarizador. Fuente: Iván Martí-Vidal (Universitat de València), y la colaboración EHT – MP4 [11.7 Mb]
  • First M87 Event Horizon Telescope Results. VII. Polarization of the Ring, ApJL, marzo 24, 2021. http://doi.org/10.3847/2041-8213/abe71e
  • First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon, ApJL, marzo 24, 2021. http://doi.org/10.3847/2041-8213/abe4de
  • Goddi, Martí-Vidal, Messias, and the EHT Collaboration, Polarimetric properties of Event Horizon Telescope targets from ALMA, ApJL March 24, 2021. http://doi.org/10.3847/2041-8213/abee6a

Más información:

La colaboración EHT involucra a más de 300 investigadores de África, Asia, Europa, América del Norte y América del Sur. Esta colaboración internacional trabaja para captar las imágenes más precisas jamás obtenidas de agujeros negros mediante la creación de un telescopio virtual del tamaño de la Tierra. Con el apoyo de una considerable inversión internacional, el EHT vincula diversos telescopios utilizando sistemas novedosos, creando un instrumento fundamentalmente nuevo con la potencia de resolución angular más alta que se ha logrado nunca.

Últimas noticias publicadas Ver más

13 Nov 2024 | Granada
Captada la señal de un sistema binario de agujeros negros masivos interactuando con una nube de gas
El Instituto de Astrofísica de Andalucía (IAA-CSIC) participa en este estudio aportando datos clave obtenidos con su espectrógrafo ALFOSC, instalado en el telescopio Óptico Nórdico (NOT) en el Observatorio del Roque de los Muchachos, en La Palma. Esta información complementa la proporcionada por el Observatorio Swift de la NASA y el proyecto ZTF.
Leer más
05 Nov 2024 | Internacional
Descubren el agujero negro que se alimenta con mayor rapidez en el universo temprano
Gracias a datos del telescopio JWST y el Observatorio de rayos X Chandra, un equipo científico ha identificado un agujero negro supermasivo que consume materia a un ritmo extraordinario, desafiando los límites teóricos. Este hallazgo podría ofrecer claves sobre el rápido crecimiento de estos objetos en los primeros mil millones de años del universo.
Leer más
05 Nov 2024 | Internacional
Europa se despide de Proba-3, el eclipsador solar, que prepara su campaña de lanzamiento
La misión Proba-3 de la ESA, que creará un eclipse solar artificial, está a punto de partir hacia su estación de lanzamiento en la India. Las dos naves espaciales maniobrarán con una gran precisión en la órbita terrestre para que una proyecte una sombra sobre la otra. España es el principal país contribuyente en esta misión, aportando cerca del 40% del presupuesto.
Leer más
404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido