La fusión de dos estrellas abre un nuevo escenario en las explosiones estelares
Científicos del Instituto de Astrofísica de Andalucía (IAA-CSIC) han estudiado una explosión de rayos gamma que, con una duración de casi un minuto, sugiere revisar la teoría de los estallidos estelares. El estudio, publicado en Nature, respalda que el origen de los elementos pesados en el universo, como el oro o el uranio, no se hallaría en supernovas sino en fusiones de estrellas de neutrones.
Las explosiones de rayos gamma (GRB) son destellos asociados a explosiones extremadamente enérgicas y detectables incluso en galaxias a miles de millones de años luz de distancia. Su duración, considerada corta o larga en función de si se prolongan más de dos segundos, se asocia a su origen: los estallidos largos se producen con la muerte de estrellas muy masivas y los cortos con la fusión de dos objetos compactos, como estrellas de neutrones, agujeros negros o ambos. Un estudio, publicado en la revista Nature y en el que participa el Instituto de Astrofísica de Andalucía del CSIC, recoge la detección de un GRB de casi un minuto de duración producido por la colisión de objetos compactos, lo que replantea la clasificación de estos estallidos y abre nuevos escenarios en la muerte de las estrellas.
Kilonova
Las estrellas de neutrones son objetos muy compactos y de rápida rotación que surgen cuando una estrella muy masiva expulsa su envoltura en una explosión de supernova. Sabemos que la fusión de estrellas de neutrones producirá un estallido corto de rayos gamma, ondas gravitatorias y una kilonova. Este último fenómeno es similar a las supernovas, pero su energía procede en parte del decaimiento de especies radiactivas y produce grandes cantidades de elementos pesados. De hecho, se cree que la mayor parte del oro y el platino en la Tierra se formaron como resultado de antiguas kilonovas.
“Al estudiar el estallido, denominado GRB211211A, observamos indicios claros que apuntaban a una kilonova, producida en la fusión de dos estrellas de neutrones, y no a una supernova, la explosión con la que terminan su vida las estrellas muy masivas –señala José Feliciano Agüí Fernández, investigador del Instituto de Astrofísica de Andalucía que participa en el estudio–. De hecho, la luminosidad, duración y color de la kilonova son similares a otro evento muy conocido que se produjo en 2017, una fusión de estrellas de neutrones que constituyó la primera observación de un evento cósmico en luz y en ondas gravitatorias”.
La firma característica de las kilonovas es su brillo en el infrarrojo cercano, muy superior a su brillo en luz visible. Esta diferencia se debe a que los elementos pesados expulsados por la kilonova bloquean la luz visible pero no la infrarroja, que presenta una longitud de onda mayor. “Sin embargo, observar en el infrarrojo cercano es un desafío técnico y pocos telescopios en tierra lo consiguen. Este hallazgo ha sido posible gracias a los telescopios gemelos Gemini, que nos mostraron que estábamos ante una fusión de estrellas de neutrones”, señala Jillian Rastinejad, investigadora de la Universidad de Nothwestern (EEUU) que encabeza el trabajo.
Las conclusiones del equipo científico, que empleó también datos de otros telescopios, entre ellos el Telescopio Espacial Hubble, el Gran Telescopio Canarias (La Palma) o el telescopio de 2.2 metros del Observatorio de Calar Alto (Almería), coinciden con las obtenidas por otro grupo encabezado por la Universidad Tor Vergata de Roma que, tras estudiar el estallido con distinto enfoque y observaciones, también concluyó que se produjo por una kilonova.
Además de contribuir a nuestra comprensión de las kilonovas y los GRBs, este descubrimiento proporciona una nueva forma de estudiar la formación de los elementos pesados en el universo. Hasta hace poco existían discrepancias sobre lo que se conoce como proceso-r (o proceso rápido), que tiene lugar en eventos estelares explosivos y es responsable de la producción de la mitad de los elementos más pesados que el hierro, entre ellos el uranio y el oro. Aunque en un principio se pensaba que eran las supernovas la fuente de estos elementos, los últimos estudios favorecen a las fusiones de estrellas de neutrones como principales productoras de los elementos más pesados.